Induction of Inflammation in Vascular Endothelial Cells by Metal Oxide Nanoparticles: Effect of Particle Composition
نویسندگان
چکیده
BACKGROUND The mechanisms governing the correlation between exposure to ultrafine particles and the increased incidence of cardiovascular disease remain unknown. Ultrafine particles appear to cross the pulmonary epithelial barrier into the bloodstream, raising the possibility of direct contact with the vascular endothelium. OBJECTIVES Because endothelial inflammation is critical for the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response and that this response depends on particle composition. METHODS To test the hypothesis, we incubated HAECs for 1-8 hr with different concentrations (0.001-50 mug/mL) of iron oxide (Fe(2)O(3)), yttrium oxide (Y(2)O(3)), and zinc oxide (ZnO) nanoparticles and subsequently measured mRNA and protein levels of the three inflammatory markers intra-cellular cell adhesion molecule-1, interleukin-8, and monocyte chemotactic protein-1. We also determined nanoparticle interactions with HAECs using inductively coupled plasma mass spectrometry and transmission electron microscopy. RESULTS Our data indicate that nanoparticle delivery to the HAEC surface and uptake within the cells correlate directly with particle concentration in the cell culture medium. All three types of nanoparticles are internalized into HAECs and are often found within intracellular vesicles. Fe(2)O(3) nanoparticles fail to provoke an inflammatory response in HAECs at any of the concentrations tested; however, Y(2)O(3) and ZnO nanoparticles elicit a pronounced inflammatory response above a threshold concentration of 10 mug/mL. At the highest concentration, ZnO nanoparticles are cytotoxic and lead to considerable cell death. CONCLUSIONS These results demonstrate that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends on particle composition.
منابع مشابه
Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells.
Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001-50 microg/ml) of CeO(2) nanoparticles and subsequently measured mR...
متن کاملAntimicrobial Investigation of CuO and ZnO Nanoparticles Prepared by a Rapid Combustion Method
In recent years, fabrication of metal oxide nanoparticles is intensively gaining the interest of various chemists as well as biochemist due to their applications in different fields. Among all the transition metal oxides, CuO and ZnO are the important metal oxide nanoparticles exhibiting tremendous properties and a wide range of applications. Both CuO and ZnO nanoparticles were prepared by comb...
متن کاملFluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat
Objective(s): Fluvoxamine is a well-known selective serotonin reuptake inhibitor (SSRI); Despite its anti-inflammatory effect, little is known about the precise mechanisms involved. In our previous work, we found that IP administration of fluvoxamine produced a noticeable anti-inflammatory effect in carrageenan-induced paw edema in rats. In this study, we aimed to evaluate the effect of fluvoxa...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کامل